
Page 1

Almost Continuous Integration for the
Co-Development of Highly Integrated
Applications and Third Party Libraries

Roscoe A. Bartlett
http://www.cs.sandia.gov/~rabartl/

Department of Optimization & Uncertainty Estimation
Trilinos Software Engineering Technologies and Integration Lead

Sandia National Laboratories

Sandia Software Engineering Seminar Series
January 14, 2009

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy under contract DE-AC04-94AL85000.

2009-1114P

Page 2

Applications (APPs) and Third-Party Libraries (TPL) at SNL

TrilinosTitan (VTK)

TrilinosAleph

Trilinos*, Xyce, NevadaCharon*

Trilinos*SIERRA*

Trilinos*, Xyce, NevadaAlegra*

TrilinosXyce

Third Partly Libraries (TPL)Applications (APPs)

• Tighter level of APP + TPL integration is needed in many cases
• Co-development of APP + TPL(s) is often needed to drive new efforts
• Current software engineering infrastructure and practices are insufficient to support

desired goals
• We need new software engineering infrastructure to support these integration efforts

* Some experimentation with more frequent APP + TPL Integration

Page 3

Lean/Agile Software Engineering Principles

• High quality software is developed in small increments and with sufficient
testing in between sets of changes.

• High quality defect-free software is most effectively developed by not
putting defects into the software in the first place (i.e. TDD, code reviews,
pair programming, etc.).

• Software should be delivered to real (or as real as we can make them)
customers is short intervals.

• Ruthlessly remove duplication in all areas.

• Avoid points of synchronization. Allow people to work as independently as
possible and have the system set up to automatically support this.

• Most mistakes that people make are due to a faulty process/system (W.
Edwards Deming).

• Automation is needed to avoid mistakes and improve software quality.

References: http://www.cs.sandia.gov/~rabartl/readingList.html

Page 4

Regression!

Lean/Agile Methods: Development Stability

Code instability
or

#defects

Time

Release X Branch for
Release X+1

Release X+1

Common Approach
NOT AGILE!

Problems
• Cost of fixing defects increases the longer they exist in the code
• Difficult to sustain development productivity
• Broken code begets broken code (i.e. broken window phenomenon)
• Long time between branch and release

– Difficult to merge changes back into main development branch
– Temptation to add “features” to the release branch before a release

• High risk of creating a regression

Page 5

Lean/Agile Methods: Development Stability

Code instability
or

#defects

Time

Release X Branch for
Release X+1

Release X+1

The Agile way!

Advantages
• Defects are kept out of the code in the first place
• Code is kept in a near releasable state at all times
• Shorten time needed to put out a release
• Allow for more frequent releases
• Reduce risk of creating regressions
• Decrease overall development cost

Page 6

APP Only Upgrades After Each Major Release of TPL

TPL Head

APP Head

TPL X release

TPL X+1

branch

APP Y+1 & TPL X+1
release

Testing: APP Dev + TPL X APP Dev
transition
to TPL X+1

Testing:
APP Dev + TPL X+1

• Transition from TPL X to TPL X+1 can be difficult and open ended
• Large batches of changes between integrations
• Greater risk of experiencing real regressions
• Upgrades may need to be completely abandoned in extreme cases
• However, this is satisfactory for many APP+TPL efforts!

TPL X+1 release

Page 7

Build and Test APP Against both TPL Release and TPL Dev

APP (SIERRA)
Dev

TPL
(Trilinos)
Release

TPL
(Trilinos)

Dev

N
ew

APP (SIERRA)
Dev Developers

TPL (Trilinos) Dev
Developers

• APP (SIERRA) Dev Developers only build/test against TPL Release
• TPL (Trilinos) Dev Developers work independent from APP
• Changes between TPL Release and TPL Dev handed through a) Refactoring, b)

minimal ifdefs (NO BRANCHES)! => Backward Compatibility!
• Use of staggered releases of TPL and APP
• APP + TPL Dev Developers drive new capabilities
• Difficult for APP to depend too much on TPL
• Does not support tighter levels of integration
• However, this is satisfactory for many APP+TPL efforts!

APP Dev + TPL Dev
Developers

Page 8

TPL X+1

branch

APP Dev Builds Against Both TPL Release and TPL Dev

TPL Head (Dev)

APP Head (Dev)

TPL X release

APP Y+1 & TPL X+1
release

Testing: APP Dev + TPL Dev
Testing: APP Dev + TPL X

Testing:
APP +

Tri Dev
Tri X
Tri X+1

• All changes are tested in small batches
• Low probability of experiencing a regression
• Extra computing resources to test against 2 (3) versions of TPL
• Some difficulty flagging regressions of APP + TPL Dev
• APP developers often break APP + TPL Dev
• Difficult for APP to rely on TPL too much
• Hard to verify TPL for APP before APP release
• However, this is satisfactory for many APP+TPL efforts!

TPL X+1 release

Testing: APP Dev + TPL Dev
Testing: APP Dev + TPL X+1

SIERRA + Trilinos Integration!
Charon + Trilinos Integration!
Alegra + Trilinos Integration!
Xyce + Trilinos Integration!

Page 9

APP + TPL Integration: Different Collaboration Models

• APP Dev only upgraded after each major release of TPL
– Little to no testing of APP + TPL Dev in between TPL releases

• APP Dev builds against both TPL Release and TPL Dev
– APP developers work against TPL Release
– APP + TPL team(s) build against TPL Dev
– Daily integration testing done for both APP + TPL Release and Dev
– Staggered releases of TPL and APP

• APP Dev developed only against TPL Dev (with “Almost” Continuous
Integration)
– Regular APP developers work independently using very recent APP-owned VC

copy of TPL Dev-
– Regular TPL developers work independently
– APP Dev + TPL Dev developers

• Check-out and modify APP Dev
• Check-out and modify TPL Dev
• Run both APP and TPL pre-checkin test suites
• Check into both APP-owned and main TPL VC repositories

– Nightly testing of APP Dev + TPL Dev automatically updates APP-owned TPL
Dev- VC Repository

– Releases best handled as combined releases of APP and TPL

Page 10

General Development & Testing Principles

• Regular TPL developers only build and run TPL pre-checkin test suite.

• Regular APP developers should only check out code that has already built
and passed the pre-checkin APP test suite.

• Nightly APP regression (and other) tests should only be run on code that
has already been shown to build and pass the pre-checkin APP test suite.

• Code that builds and passes the pre-checkin test suite is safe to check in.

Page 11

APP Owned

TPL Owned

Basic Setup for APP + TPL Almost Continuous Integration

Main APP
VC Repository

(Dev)

APP-owned TPL
VC Repository

(Dev-)

APP Dev
Developers

TPL Dev
Developers

APP Pre-Checkin
Test Suite

APP Regression
Test Suite

TPL Regression
Test Suite

APP Dev
Nightly Testing

APP Dev + TPL Dev-

TPL Dev
Nightly Testing

Main TPL
VC Repository

(Dev)

TPL Pre-Checkin
Test Suite

APP Dev + TPL Dev
Developers

APP Dev + TPL Dev

Page 12

1.a) Check out

Standard APP Development Process

Main APP
VC Repository

(Dev)

APP-owned TPL
VC Repository

(Dev-)

APP Pre-Checkin
Test Suite

1.b) Check out

1.c) Check out

2.a) Modify & extend

3) Build

4) Run test suite

2.b) Modify & extend

5.a) Check in

5.b) Check in

APP Local
Working Directory

(Dev)

TPL Local
Working Directory

(Dev-)

APP Pre-Checkin
Test Suite

Working Directory

• TPL (Dev-) code is typically not modified by average APP developers!
• However, small changes can be made and can be good!

5.c) Check in?

Page 13

5.b) Check in

APP Dev + TPL Dev Development Process

1.a) Check out

1.b) Check out

1.c) Check out

1.d) Check out (and merge)

3) Build

4.a) Run test suite

1.e) Check out

2.a) Modify & extend

2.b) Modify & extend

2.d) Modify & extend

4.b) Run test suite

2.c) Modify & extend

5.a) Check in

5.c) Check in

5.d) Check in

5.e) Check in

TPL Local
Working Directory

(Dev- and Dev)

APP-owned TPL
VC Repository

(Dev-)

Main APP
VC Repository

(Dev)

APP Pre-Checkin
Test Suite

Main TPL
VC Repository

(Dev)

APP Local
Working Directory

(Dev)

APP Pre-Checkin
Test Suite

Working Directory

TPL Pre-Checkin
Test Suite

TPL Pre-Checkin
Test Suite

Working Directory

• Pre-checkin test suites for APP and TPL are both run before checkin
• Simultaneous checks into APP-owned TPL Dev- and Main TPL Dev VC Repositories!

– Changes in APP-owned TPL VC Dev- Repos get back into Main TPL VC Dev Repos!

Page 14

4) [passed] Check in

Nightly APP + TPL Dev Testing and Checkins of TPL Dev-

1.a) Check out

1.b) Check out

1.c) Check out

1.d) Check out (and merge)

2) Build

3) Run test suite

APP-owned TPL
VC Repository

(Dev-)

Main APP
VC Repository

(Dev)

APP Pre-Checkin
Test Suite

Main TPL
VC Repository

(Dev)

APP Local
Working Directory

(Dev)

TPL Local
Working Directory

(Dev- and Dev)

APP Pre-Checkin
Test Suite

Working Directory

• Only runs pre-checkin test suite and then only on the primary development
platform! (just like a regular APP developer)

• TPL Dev- VC Repository is automatically updated by nightly testing
process if a) merge, b) build, and c) pre-checkin test suite all pass!

– This is the same criteria we have for any regular APP developer checkin!
• Integration build is checked throughout the day with continuous integration

(but without the auto-updates of TPL Dev- VC repository to avoid conflicts)

Page 15

APP + TPL Development and Testing Details and Policies

• Nightly Testing:
– Nightly APP Dev + TPL Dev testing and checking in only run on primary

development platform and only runs pre-checkin test suite
=> Minimizes extra testing computer resources!

– Nightly APP regression (and other stronger) tests are only run on APP Dev + TPL
Dev- and *not* with TPL Dev (but on the same day after upgrade of APP Dev-)

• Only one version of Dev code goes through extended testing (e.g. porting, regression,
performance, scalability).

• If APP Dev + TPL Dev testing and updating of TPL Dev- succeeds, then extended
testing will involve all changes to APP Dev and TPL Dev in the last 24 hours.

• Continuous Integration Testing:
– Build and test APP Dev + TPL Dev throughout the day to flag problems and to

help support co-development of APP Dev + TPL Dev

• Open Questions:
– How are multiple TPL handled in nightly testing ?

• Are all TPL updated at the same time in nightly testing process?
• Are TPL updated and testing separately in a chain (TPL 1 followed by TPL 2, etc.)?

– What about intra-TPL dependencies (i.e. Nevada and Xyce => Trilinos)?
• Do all TPL need to follow this process as well?

Page 16

APP + TPL Almost Continuous Integration and Releases

TPL Head (Dev)

APP Head (Dev)

APP Y+1 & TPL APP Y+1 release

Nightly Testing: APP Dev + TPL Dev (pre-checkin tests only, TPL Dev- checkin)
Nightly Testing: APP Dev + TPL Dev- (complete test suites)
Supported with asynchronous continuous integration testing of APP Dev + TPL Dev

TPL APP Y+1 release

TPL APP Y+1

branch

APP Y+1

bran
ch

The Future of APP + TPL Integration?

• All changes are tested in small batches
• Low probability of experiencing a regression between major releases
• Less computing resources for detailed nightly testing (only one TPL version)
• All tested regressions are flagged in less than 24 hours
• Allows code to flow freely between the APP and TPL
• Supports rapid development of new capabilities from top to bottom
• All code checked out by APP Dev developers has passed pre-checkin build/test
• More complex processes (i.e. requires some tools?)
• APP Dev developers spend more time spent recompiling TPL code
• Recommended for projects requiring high levels of integration & collaboration!

Page 17

Challenges with APP-Specific TPL Releases

Xyce J+1
(released against

Trilinos X)

VTK M+1
(released against

Trilinos X+1)

Multiple releases of TPL (Trilinos) presents a possible problem with complex APPs

Solution:
=> Provide perfect backward compatibility of Trilinos (TPL) X through Trilinos SIERRA Y+1

SIERRA Y+1
(released against

Trilinos SIERRA Y+1)

Trilinos
SIERRA

Y+1?

Page 18

Assorted Ideas for APP Dev + TPL Dev Nightly Testing

• Nightly and continuous updating, testing, and checkin algorithm
– Check out APP Dev and + TPL Dev- from APP-owned TPL Dev- VC

Repository(s)
– Build and run pre-checkin APP test suite (for APP Dev + TPL Dev-)
– For each TPL (i = 0 ... N-1) [In order of increasing dependencies]

• Perform update of TPL i Dev from main TPL i VC Dev repository
• Build and run pre-checkin APP test suite
• If all passed, check into APP-owned TPL i Dev- VC repository [Nightly only]
• Otherwise, skip checkin into APP-owned TPL i Dev- VC repository

• Advantages
– Failures with one TPL do not automatically bring down integration with all TPL

• Example: If Trilinos Dev works with Charon but Xyce Dev does not, at least Trilinos Dev
would get updated and used by Charon Dev.

– Provides additional information on where regressions are coming from
• Example: A test passes with APP Dev + TPL Dev- but fails with APP Dev + TPL Dev

Page 19

Maintenance of APP + TPL Integration

Hard TPL #2
Issues

Hard TPL #1
Issues

APP Dev + TPL Dev Build/Test
or

APP Dev + TPL Dev-/Release Build/Test

TPL #1
Developers

TPL #2
Developers

APP + TPL
Monitors

TPL #1
Representatives

TPL #2
Representatives

All failures

TPL #1
Issues

APP
Representatives

APP Developers

APP
Issues

TPL #2
Issues

• APP + TPL Monitor:
– Member of the APP development team
– Has good familiarity with the TPLs
– Performs first-round triage (APP or TPL?)
– Forwards issues to APP or TPL Reps
– Ultimate responsibility to make sure issues

are resolved
• APP Representative:

– Member of the APP development team
– Second-round triage of APP issues
– Forwards hard APP issues to APP

developers
• TPL Representative:

– Member of the TPL development team
– Has some familiarity with the APPs
– Second-round triage for TPL issues
– Forwards hard TPL issues to TPL

developers
• General principles:

– Roles of authority and accountability
(Ordained by management)

– At least two people serve in each role
– Rotate people in roles

Hard APP
Issues

Page 20

Summary #1

• Nightly building and testing of the development versions of the application
and TPLs:
– results in better production capabilities and better research,
– brings TPL developers and APP developers closer together allowing for a better

exchange of ideas and concerns,
– refocuses TPL developers on customer efforts,
– helps drive continued research-quality TPL development, and
– reduces barriers for new TPL algorithms to have impact on production

applications.
• APP Dev developed only against TPL Dev (with “Almost” Continuous

Integration)
– Regular APP developers work independently using very recent APP-owned VC

copy of TPL Dev-
– Regular TPL developers work independently
– APP Dev + TPL Dev developers

• Check-out and modify APP Dev
• Check-out and modify TPL Dev
• Run both APP and TPL pre-checkin test suites
• Check into both APP-owned and main TPL VC repositories

– Nightly testing of APP Dev + TPL Dev automatically updates APP-owned TPL
Dev- VC Repository

– Releases best handled as combined releases of APP and TPL

Page 21

Summary #2

• Integration Models:
– APP Dev only upgraded after each major release of TPL

• Little to no testing of APP + TPL Dev in between TPL releases
– APP Dev builds against both TPL Release and TPL Dev

• Daily Integration testing done for both APP + TPL Release and Dev
• Staggered releases of TPL and APP

– APP Dev developed only against TPL Dev (with “Almost” Continuous Integration)
• APP Dev + TPL Dev developers update both APP-owned and main TPL repositories
• Nightly testing of APP Dev + TPL Dev automatically updates APP-owned TPL Dev- VC

Repository
• Releases best handled as combined releases of APP and TPL
• TPL Dev- checkins can be dialed back approaching TPL Release and Dev Integration!

• Final thoughts
– Each of these different integration models will be appropriate for a particular

APP+TPL situation.
– The particular integration model can be switched during the life-cycles of the APP

and TPL depending on several factors:
• How critical is the TPL functionality currently to the APP?
• Are there alternatives to a particular TPL that can duplicate functionality?
• How actively is the TPL being developed?
• Is it critical for the APP to continue to accept new releases of the TPL?
• How active is the collaboration between APP and TPL developers?
• Is the TPL a fundamental part of the infrastructure of the APP?
• ...

